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INTRODUCTION
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Antimicrobial resistance (AMR)

AMR happens when microorganisms (such as bacteria, fungi, viruses and
parasites) change after exposure to antimicrobial drugs (such as antibiotics,
antifungals, antivirals, antimalarials and anthelmintics).

As a result, these medicines become ineffective and infections persist in the
body, increasing the risk of spread to others and resulting in prolonged
illness, disability and death.

AMR occurs naturally over time, usually through genetic changes. However,
the misuse and overuse of antimicrobials is accelerating this process.

https://www.who.int/health-topics/antimicrobial-resistance



Antimicrobial resistance

Time to first detection of human pathogens resistant to vaccines and
antimicrobial drugs. (Kennedy & Read 2017)



The malaria transmission cycle

Resistant infections can enter the cycle by:

∙ a mosquito transmitting a resistant strain,
∙ treatment killing sensitive parasitaemia within a person, and thus

resistant strains are left, and with additional resources.



Drug resistant malaria

DEFINITION: The ability of a parasite strain to survive and/or to multiply
despite the administration and absorption of a drug given in doses equal or
higher than those usually recommended, but within the limits of tolerance
of the patients.

∙ Main obstacle to malaria control - including reemergence of malaria.
∙ Resistance to nearly all antimalarials in current use.
∙ Curtails the life span of antimalarial drugs.
∙ Increases malaria morbidity, mortality and treatment cost.
∙ Accelerated by the way the drugs are used, and by the social and
economic conditions in which they are used.



Chloroquine resistance to Plasmodium falciparum

R. M. Packard (2014) The New England Journal of Medicine



Detecting resistance with molecular marker data



How does drug resistant malaria arrive in India?



Detecting resistance with molecular marker data



Detecting resistance with molecular marker data

Up-to-date, quality data are needed on the efficacy of the recommended
treatments, to ensure that patients receive efficacious treatment.

Conducting these studies can be challenging, but the investment of time and
resources is small when compared with the funding spent on treatments and
the millions of patients depending on the continued efficacy of these
treatments.

Molecular markers are an asset for confirming resistance, in the analysis of
trends and as an early warning signal.

Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance,
WHO November 2020.



Overview

Using a toy data set:

∙ The question
∙ The model
∙ Results
∙ Conclusions



THE QUESTION



Example collected data and ‘true density’

Red points correspond to a resistant infection detected.
Blue points correspond to no resistant infection detected.



Example collected data and ‘true density’

Red points correspond to a resistant infection detected.
Black dots are resistance introduction hot spots.



Introducing resistance into the population

The ‘true’ density of resistant pathogens in a population at t = 0.
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Assume that resistant
pathogens first enter
the population from
N resistance introduc-
tion hot spots, such as
HEALTH CARE CENTRES
or MAJOR TRANSPORT
HUBS (black dots).

Each n hot spot has a magnitude θn of resistant pathogens which it
contributes into the population, and disperses at rate ϕn.



Hot spots which introduce resistance

Each n resistance hot spot has a
magnitude θn of resistant pathogens
which it contributes into the popula-
tion, and disperses at rate ϕn

Resistance introductions = u(s, 0) =
N∑
n=1

θne−(|s−dn|2)/ϕ2
n∫

S e−(|s−dn|2)/ϕ2
n ds

We use a scaled bivariate Gaussian kernel with compact (truncated) support centred
at a point with coordinate dn where |s− dn| is the Euclidean distance.

Using MCMC we estimate ϕn and θn
(initial estimates assign the same value to all ϕn and all θn).



THE MODEL



The probability of the data

The data yi ∈ {0, 1} is the presence of a drug resistant infection at a
particular location, at a particular time.

The probability of detecting a drug resistant infection depends on the true
density u(si, ti) and individual factors (such as age).

yi = Bernoulli(pi)
g(pi) = u(si, ti)ex

′
i β

xi are the covariates regarding the individual (e.g. age).



The density of resistant infections u(si, ti): dispersal

The density of the re-
sistant infection at X
depends on the density
of resistant infections at
neighbouring cells.

∂
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µ(s)u(s, t)

]
∙ u(s, t) is the density of the dispersing resistant infection.
∙ s1 and s2 are the spatial coordinates contained in s.
∙ µ(s, t), the diffusion coefficient, could depend on covariates.



The density of resistant infections u(si, ti): growth

The density of the resistant
infection at X depends on the
density of resistant infections at
neighbouring cells.

The density of the resistant in-
fection at X ALSO depends on a
growth component, which de-
pends on the density at X.

∂
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]
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∙ u(s, t) is the density of the dispersing resistant infection.
∙ s1 and s2 are the spatial coordinates contained in s.
∙ µ(s, t), the diffusion coefficient, could depend on covariates.
∙ λ(s), the growth coefficient, could depend on covariates.



The density of resistant infections u(si, t)

∂

∂t
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µ(s)u(s, t)

]
︸ ︷︷ ︸

neighbouring transmission

+ λ(s)u(s, t)︸ ︷︷ ︸
local transmission

+ u(s, 0)︸ ︷︷ ︸
introductions

where log(µ(s)) = α0 + z(s)′α1 and λ(s) = γ0 + w(s)′γ1 , and z and w are the spatial
covariates that affect onward transmission (prevalence).



The model

The data yi ∈ {0, 1} is the presence of drug resistant malaria at a particular
location, at a particular time.

yi = Bernoulli(pi)
g(pi) = u(si, ti)ex

′
i β

∂

∂tu(s, t) =

(
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∂s2
1
+

∂2

∂s2
2

)[
µ(s)u(s, t)

]
+ λ(s)u(s, t) + u(s, 0)

log(µ(s)) = α0 + z(s)′α
λ(s) = γ0 + w(s)′γ

u(s, 0) =
N∑
n=1

θne−(|s−dn|2)/ϕ2
n∫

S e−(|s−dn|2)/ϕ2
n ds

xi are the covariates regarding the individual (age).
z and w are the spatial covariates that affect onward transmission
(prevalence).



Sample data on a 10,000 × 10,000 grid

t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10

t = 11 t = 12 t = 13 t = 14 t = 15

t = 16 t = 17 t = 18 t = 19 t = 20

Red / Blue points correspond to a resistant infection detected / not detected.
Black dots are resistance introduction hot spots.



The covariates and priors

x: age of sampled z(s) and w(s): disease prevalence

yi = Bernoulli(pi)

g(pi) = u(si, ti)ex
′
i β

∂
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u(s, t) =
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µ(s)u(s, t)

]
+ λ(s)u(s, t) + u(s, 0)

log(µ(s)) = α0 + z(s)′α
λ(s) = γ0 + w(s)′γ

u(s, 0) =
N∑
n=1

θne−(|s−dn|2)/ϕ2
n∫

S e−(|s−dn|2)/ϕ2
n ds



The algorithm

1. Set initial values for α0, α1, β, γ0, γ1, θ1, θ2, θ3, θ4 θ5, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5

2. while l < m do
3. update u(s, t)
4. sample [θ1, θ2, θ3, θ4, θ5, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5|α0, α1, β, γ0, γ1]

5. update u(s, t)
6. sample [α0, α1|β, γ0, γ1, θ1, θ2, θ3, θ4, θ5, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5]

7. update u(s, t)
8. sample [β|α0, α1, γ0, γ1, θ1, θ2, θ3, θ4, θ5, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5]

9. sample [γ0, γ1|α0, α1, β, θ1, θ2, θ3, θ4, θ5, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5]

10. end while



Input / Output

Input
∙ Data: yi = [0, 1]
∙ Covariates: x, z(s) and w(s)
∙ Priors: θn, ϕn ∼ TN(0, 106), α ∼ N(0, 10I), γ ∼ N(0, 10I), α ∼ N(0, 10I)

* * *

Output

∙ From θn and ϕn, the important hot spots.
∙ From α, the dispersal coefficient (neighbouring transmission), µ(s).
∙ From γ, the growth coefficient (local transmission), λ(s).
∙ From all of the above, the true density of resistant infections, u(s, t).
∙ From β and u(s, t), the probability an individual is sampled, u(si, ti)ex

′
i β .



THE RESULTS



The magnitude of resistance introduction (θn)

Each n resistance hot spot has a
magnitude θn of resistant pathogens
which it contributes into the population,
and disperses at rate ϕn

u(s, 0) =
N∑
n=1

θne−(|s−dn|2)/ϕ2
n∫

S e−(|s−dn|2)/ϕ2
n ds
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The dispersal of resistance introduction (ϕn)

Each n resistance hot spot has a
magnitude θn of resistant pathogens
which it contributes into the population,
and disperses at rate ϕn

u(s, 0) =
N∑
n=1

θne−(|s−dn|2)/ϕ2
n∫

S e−(|s−dn|2)/ϕ2
n ds
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Identify resistance introduction hot-spots

Each n resistance hot spot has a magnitude θn of resistant pathogens which
it contributes into the population, and disperses at rate ϕn
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N∑
n=1
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Other parameters
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where log(µ(s)) = α0 + z(s)′α1 and λ(s) = γ0 + w(s)′γ1 , and z and w are the spatial
covariates that affect onward transmission (prevalence).



Estimated density of resistant infections (25% sampled)



Estimated probability of being sampled (25% sampled)



Error analysis

1. Identifying resistance hot spots.
Can we still identify resistance hot spots when sampling a reduced
proportion of the 10,000 × 10,000 region?

2. Comparing predictive and forecasting accuracy with a
Generalised Additive Model (GAM)
Unlike the partial differential equation in the mechanistic model, the
spatial and temporal effects are modelled individually, and do not depend
on covariates.



Identifying resistance hot spots

1% sampled 5% sampled

25% sampled 50% sampled



Identify introduction hot-spots

The error in θn and ϕn when sampling 50%, 25%, 5% and 1% at each time.
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Estimated density of resistant infections (5% sampled)



Comparison with Generalised Additive Model (GAM)

yi ∼ Bernoulli(pi)
g(pi) = xiβ + ηt + ηs.

∙ All the covariates are included in the vector xi (age and disease
prevalence).

∙ The effect of time ηn and space ηs are modelling using reduced dimension
thin plate regression splines.

∙ The spatial and temporal effects are modelled individually, and do not
depend on covariates.

∙ To check for collinearity between covariates and spatial and temporal
effects, we also consider

yi ∼ Bernoulli(pi)
g(pi) = xiβ.



Comparison with Generalised Additive Model (GAM)

Generalised additive model coefficients

g(pi) x z w

50% xiβ + ηt + ηs -12.9 66.3 15.4
xiβ -8.8 -63.3 64.7

25% xiβ + ηt + ηs -13.1 41.4 15.6
xiβ -8.8 -64.3 65.7

5% xiβ + ηt + ηs -13.2 48.6 15.6
xiβ -8.8 -62.6 64.1

2% xiβ + ηt + ηs -13.0 51.3 59.8
xiβ -8.6 79.8 -78.4

∙ x: sampling probability

∙ z: neighbouring transmission (diffusion)

∙ w: local transmission (growth)



Comparison with Generalised Additive Model (GAM)

Generalised additive model coefficients

g(pi) x z w

50% xiβ + ηt + ηs -12.9 66.3 15.4
xiβ -8.8 -63.3 64.7

25% xiβ + ηt + ηs -13.1 41.4 15.6
xiβ -8.8 -64.3 65.7

5% xiβ + ηt + ηs -13.2 48.6 15.6
xiβ -8.8 -62.6 64.1

2% xiβ + ηt + ηs -13.0 51.3 59.8
xiβ -8.6 79.8 -78.4

∙ x: sampling probability

∙ z: neighbouring transmission (diffusion)

∙ w: local transmission (growth)



Comparison with Generalised Additive Model (GAM)

Out-of-sample model prediction validation for t = [1, 15] and out-of-sample forecast
validation for t = [16, 20] using binomial deviance (SMALLER IS BETTER).

1% sampled 5% sampled

25% sampled 50% sampled



CONCLUSIONS



Proof of concept

∙ The mechanistic spatio-temporal model is more accurate than GAM for

prediction.

∙ GAM encounters difficulty with collinearity when accounting for spatial

and temporal autocorrelation.

∙ The mechanistic spatio-temporal model can identify which resistance hot

spots are of most concern, even when only sampling 5% of the region.

∙ Versatile to different scales - from global, national, to district.

∙ The location of resistance hot spots can be set as unknown variables

instead.

∙ Depending on the data, can use yi ∼ Poisson(λi), not Bernoulli.
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