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Antimicrobial resistance (AMR) e — g,

AMR happens when microorganisms (such as bacteria, fungi, viruses and
parasites) change after exposure to antimicrobial drugs (such as antibiotics,
antifungals, antivirals, antimalarials and anthelmintics).

As a result, these medicines become ineffective and infections persist in the
body, increasing the risk of spread to others and resulting in prolonged
illness, disability and death.

AMR occurs naturally over time, usually through genetic changes. However,
the misuse and overuse of antimicrobials is accelerating this process.

https://www.who.int/health-topics/antimicrobial-resistance
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Drug resistant malaria SwissTPH g

DEFINITION: The ability of a parasite strain to survive and/or to multiply
despite the administration and absorption of a drug given in doses equal or
higher than those usually recommended, but within the limits of tolerance
of the patients.

- Main obstacle to malaria control - including reemergence of malaria.
- Resistance to nearly all antimalarials in current use.

- Curtails the lifespan of antimalarial drugs.

- Increases malaria morbidity, mortality and treatment cost.

- Accelerated by the way the drugs are used, and by the social and
economic conditions in which they are used.
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How does drug resistant malaria arrive in India? Swiss TPH g
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Detecting resistance with molecular marker data Swiss TPH g

continent val cour year  tested prev. lon lat mutation site estloc  present
associated with
Asia slow clearance Thailand 201 85 | 1932%[1243-2878) | 104 15.204845390319524 RS39T Ubon Ratchathani 0 17
associated with | Democratic
Asia slow clearance Republic 201 1| 11.71%[6.97 - 19.01) | 1o “ R539T | Champasak Province 0 13
associated with
Asia slow clearance | Cambodia 2011 ) 26%[0.44-1288) | 10: 2 R§39T Paiin 0 1
associated wit
Asia slow clearance India 2013 17 580%(105-2698] | 86 23.3309991455078 R39T Punulia 0 1
associated with
Asia slow clearance India 2013 27 | 1111%[385-2806] | @ 1| 23 R39T Bankura 0 3
associated with
Asia slow clearance India 2013 3% 278%[049-1417) | 86 2 R39T Kolkata 0 1
associated with | Democratic [Phouvang DH, Phowong
Asia slow clearance Republic 2015 2 345%[061-1718] | 1069552993774414 | 14748881340026855 RS39T Attapey 0 1
associated with | Democratic Sanamxay DH,
Asia slow clearance Republic 2015 9 659%(306-1365] | 106 14 14 RS39T Sanamxay. Attapeu 0 6
associated with | Democratic Khong DH. Khong,
Asia slow clearance Republic 2015 66 12.12% (627 -22.14) | 105 14.117712020874023 RS39T Champasak 0 8
associated with |  Democratic Pathoumphane.
Asia slow clearance Republic 2015 338 | 97%[654-1272] | 105 14841 RS39T Champasak 0 Eil
associated with
Asia slow clearance India 2014 2 455%[081-218) | 87.0624008178711 | 23 RS39T Bankurz 0 1
associated with
Asia slow clearance India 2015 49 10.2%[444-21.76] | 87.0624008178711 | 23 RS39T Bankura 0 5
associated with
Asia slow clearance India 2014 2 40% [0.71-19.54] 8 2 RS39T Kolkata 0 1
unknown effect on
Afiica clearance Burking Faso 2010 2713 11%0.37 -3.18] 12563333015441895 | Caaay Ziniare 0 3
unknown effect or
Afiica clearance Ghana 2010 76 132%1023-708] | 1 10.884699621472168 | GBMR Nawongo 0 1
unknown effect on
Afica clearance Mali 2009 7 342%1134-8461 | -9489500045776367 | 13034099578857422 |  GaasE Kita 0 4




Detecting resistance with molecular marker data Swiss TPH g,

Up-to-date, quality data are needed on the efficacy of the recommended
treatments, to ensure that patients receive efficacious treatment.

Conducting these studies can be challenging, but the investment of time and
resources is small when compared with the funding spent on treatments and
the millions of patients depending on the continued efficacy of these
treatments.

Molecular markers are an asset for confirming resistance, in the analysis of
trends and as an early warning signal.

Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance,
WHO November 2020.
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Using a toy data set:

- The question
- The model
- Results

- Conclusions



THE QUESTION



Example collected data and ‘true density’ Swiss TPH g

Red points correspond to a resistant infection detected.
Blue points correspond to no resistant infection detected.



Example collected data and ‘true density’
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t=1

Red points correspond to a resistant infection detected.
Black dots are resistance introduction hot spots.



Introducing resistance into the population SwissTPH g

The ‘true’ density of resistant pathogens in a population at t = 0.

Assume that resistant
pathogens first enter
the population from
N resistance introduc-
tion hot spots, such as
HEALTH CARE CENTRES
or MAJOR TRANSPORT
HUBS (black dots).

[
°
=1
=
<
S

latitude

Each n hot spot has a magnitude 0, of resistant pathogens which it
contributes into the population, and disperses at rate ¢.




Hot spots which introduce resistance SwissTPH g

Each n resistance hot spot has a
magnitude 0, of resistant pathogens
which it contributes into the popula-
tion, and disperses at rate ¢,

longitude

latitude

N
9. o—(Is—0nl2)/ 4
Resistance introductions = u(s, 0) = Z T gy S
e- s

We use a scaled bivariate Gaussian kernel with compact (truncated) support centred

at a point with coordinate dn where |s — dn| is the Euclidean distance.

Using MCMC we estimate ¢, and 6,
(initial estimates assign the same value to all ¢, and all 8,).



THE MODEL
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The data y; € {0,1} is the presence of a drug resistant infection at a
particular location, at a particular time.

The probability of detecting a drug resistant infection depends on the true
density u(s;, t;) and individual factors (such as age).

yi = Bernoulli(p;)
a(p) = u(s,t)e’”

X; are the covariates regarding the individual (e.g. age).



The density of resistant infections u(s;, t;): dispersal Swiss TPH g,

The density of the re-
sistant infection at X
depends on the density
of resistant infections at
neighbouring cells.

%u(s, t) = (

642 T. ). Hefley et al. Ecology Letters 2017

Table 1 Examples of ecological dynamics addressed by statistical imple-
mentation of diffusion models

Ecological dynamic References
Animal disease Hooten & Wikle (2010)
Animal resource Moorcroft & Barnett (2008)
selection
Fish migration Arab (2007, ch. 2)
Insect dispersal Powell & Bentz (2014)
Invasion/colonisation Wikle (2003), Hooten & Wikle (2008), Broms
et al. (2016), and Williams et al. (2017)
Plant disease Zheng & Aukema (2010)

> 0

55+ 5 ) WG]

- u(s,t) is the density of the dispersing resistant infection.

- s1and s; are the spatial coordinates contained in s.

- u(s,t), the diffusion coefficient, could depend on covariates.



The density of resistant infections u(s;, t;): growth
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The density of the resistant The density of the resistant in-
infection at X depends on the fection at X ALSO depends on a
density of resistant infections at growth component, which de-
neighbouring cells. pends on the density at X.

%u(s, 0 = <a%2 + a%g) [u(s)u(s, B)] + A(S)u(s, 1)

- u(s,t) is the density of the dispersing resistant infection.

- s1and s; are the spatial coordinates contained in s.

- p(s, t), the diffusion coefficient, could depend on covariates.
- A(s), the growth coefficient, could depend on covariates.



The density of resistant infections u(s;, t)
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‘ The density of resistant infections at location X at time t depends on:

The density of resistant infections
at neighbouring cells at time t — 1.

The density of resistant infections
atcell Xat time t— 1.

An underlying, time-independent,
process.

Tr ission from neighbouring Local transmission — depends on
regions — depends on disease disease prevalence.
prevalence.
19} ? 0?
—u(s,t)=| == + =5 | [p(5)u(s, )]+ A(s)u(s,t)
] 2 5 5
ot 851 852 ——

neighbouring transmission

Resistance introduction —
depends on distance from a
resistance hot spot

local transmission

+  u(s,0)
N——
introductions

where log(u(s)) = ag + 2(s)’ar and A(S) = o + w(s)’v1, and z and w are the spatial

covariates that affect onward transmission (prevalence).
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The data y; € {0,1} is the presence of drug resistant malaria at a particular
location, at a particular time.

yi = Bernoulli(p;)
g(p) = u(s,t)e"’
%u(s, t) = (% + %) [u(s)u(s, t)] + A(s)u(s,t) + u(s, 0)
log(u(s)) = ao+2z(s)a
A(s) = Vo +w(s)'y
—(Is—dnl?)/47
u(s,0) =

Zfe (Is—dnl?)/%% ds

x; are the covariates regarding the individual (age).
z and w are the spatial covariates that affect onward transmission
(prevalence).



Sample data on a 10,000 x 10,000 grid SwissTPH g

t=1 t=2 t=3 t=4 t=5
. 3 . . .
. 3 0 . . . . . (3 £
. . . . .
. . . . .
t=6 t=7 t=8 t=9 t=10
. . . . s
. . .. » o . . o ‘e

t=16 t=17 t=18 t=19 t=20

Red / Blue points correspond to a resistant infection detected / not detected.
Black dots are resistance introduction hot spots.



The covariates and priors . g

x: age of sampled z(s) and w(s): disease prevalence
A L = IE‘_‘-E‘:- old hlgh
o "‘ (O]
© e
2 2
e £|
e 5
young
- E{ituaer - no data
y; = Bernoulli(p;)
’
9(pi) = u(si,t;)es”’
gu(s t) = o + o [u(s)u(s, t)] + A(s)u(s, t) + u(s, 0)
ot 7 T \as sy ) ’ ’
log(u(s)) = ao+2(s)a
As) = v +w(s)y

N ge—(Is—dnl?)/ 6
u(s,0) = Zm

n=1



The algorithm SwissTPH g

1. Set initial values for ap, aa, B, Yo, v1, 61, 62, 03, 04 05, 1, 2, B3, Pu, s
2. while [ < m do

3. update u(s,t)

4 sample [61, 62, 03,04, 05, p1, 2, b3, Pu, Ps| o, a1, B, Y0, 1]

5 update u(s,t)

6. sample [ao, a1|B, 70,71, 01, 02,03, 04, 05, 1, b2, P3, P, Ps)

7 update u(s,t)

8 sample [Blao, a1, 0,71, 01,62, 03, 04, 05, P1, h2, B3, P, ps]

9. sample [y, 1|0, a1, B, 601,02, 03, 04,05, 1, d2, P3, P, Ps)
10. end while



Input / Output SwissTPH S

Input
- Data: y; = [0,1]
- Covariates: x, z(s) and w(s)
- Priors: On, ¢n ~ TN(0,10°), a ~ N(0,101), v ~ N(0,101), a ~ N(0,101)

* Kk x

Output

- From 6, and ¢,, the important hot spots.

- From a, the dispersal coefficient (neighbouring transmission), u(s).

- From #, the growth coefficient (local transmission), A(s).

- From all of the above, the true density of resistant infections, u(s, t).

- From g and u(s, t), the probability an individual is sampled, u(s,-,ti)exrlﬁ.



THE RESULTS




The magnitude of resistance introduction ()
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count

900 -

3004

longitude

Each n
magnitude 0,

N

u(s,0)=>_

resistance hot spot has a
of

resistant pathogens
which it contributes into the population,
and disperses at rate ¢p

Gne—(Is—dnl)/ 6}

fs e—(Is—=dn[?)/% ds

n=1
latitude
thetal theta2 theta3 thetad theta5
median median median median median
90.0 715 68.6 57.5 64.4
40 6‘0 8‘0 160 40 6‘0 8‘0 160 40 6‘0 8‘0 l(l)O 40 Gb BlO 1(l)0 40 60 80 100
value

Actual 9 = (80,70, 65, 60, 60).



The dispersal of resistance introduction (¢,)
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count

longitude

Each n
magnitude 0,

and disperses at rate ¢p

resistance hot spot has a
resistant pathogens
which it contributes into the population,

2y /42
(5,0) N Ope—(Is—dnl%)/¢5
u(s,0) = E _
—(Is—dn|2) /&2
pa fse (Is—dnl?)/¢h ds
latitude
phil phi2 phi3 phi4 phis
median median median median median
900 0.078 0.092 0.102 0.132 0.115
600
3004
04

value

Actual ¢ = (0.08,0.09,0.1,0.15,0.12)

T T T T T T T T T T T T T T T T T T T T
0.06 0.09 0.12 0.150.06 0.09 0.12 0.150.06 0.09 0.12 0.150.06 0.09 0.12 0.150.06 0.09 0.12 0.15



Identify resistance introduction hot-spots SwissTPH g

Each n resistance hot spot has a magnitude 6, of resistant pathogens which
it contributes into the population, and disperses at rate ¢,

truth

estimate
05

longitude

on|tude

latitude latitude

N g,e(Is=dil’)/oh

Resistance introductions = u(s,0) =
(s,0) ~ [ e—(s—dnl2)/% ds




Other parameters
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count

count

400 median 400 i
median
-7.94 0.201
300 3001
€
200 3 200+
o
100 1004
0 T T T T T O- T T T
-8.2 -8.1 -8.0 -7.9 -7.8 -7.7 0.19 0.20 0.21
alpha0 gamma0
. median
400 median 0.119
1.07 300
300 -
=
200 3 291
o
100 100+
0-l T T T O- T T T T T
0.4 0.8 1.2 1.6 0.075 0.100 0.125 0.150 0.175
alphal gammal

Actual « = (—8,1), v = (0.2,0.1), and 8 = —10.

%u(s, ) = <

where log((s)) = ag + z(s)’aq and A(s) = ~vo + w(s)'y1, and z and w are the spatial
covariates that affect onward transmission (prevalence).

62
a2 a5

62
0s?

-10.0 -9.!
beta

) [(s)u(s, )] + A(s)u(s, t) + u(s, 0)



Estimated density of resistant infections (25% sampled) ¢ .. py g

Truth (u(s,?))
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t=9 =10
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t=16 t=17 t=18 t=19 1=20

t=12 t=13 =1 t=15




Estimated probability of being sampled (25% sampled) ¢ .. 1py g

Truth (p) E(ply)

4 t=5 10 t=1 t=2 t=3 t=4 t=5 10
..... 0.8 ..... 0.8
t=6 t=7 t=8 t=9 t=10 t=6 t=7 t=8 t=9 t=10

t=1 t=2 t=3

0.6
t=11 t=12 t=13 t=14 1=15 t=11 t=12 t=13 t=14 t=15
..... ) )
t=16 t=17 t=18 =19 1=20 02 {-16 =17 t=18 =19 t=20 0.2



Error analysis Swiss TPH g

1. Identifying resistance hot spots.

Can we still identify resistance hot spots when sampling a reduced
proportion of the 10,000 x 10,000 region?

2. Comparing predictive and forecasting accuracy with a
Generalised Additive Model (GAM)
Unlike the partial differential equation in the mechanistic model, the
spatial and temporal effects are modelled individually, and do not depend
on covariates.



Identifying resistance hot spots SwissTPH g

1% sampled 5% sampled

longitude
longitude

latitude latitude

25% sampled 50% sampled

longitude
longitude

latitude latitude



Identify introduction hot-spots Swiss TPH g,

The errorin 6, and ¢, when sampling 50%, 25%, 5% and 1% at each time.

6 (magnitude of hot spot) ¢ (dispersal of hot spot)

0007 f 9

-0.25+

-0.501

mean relative error
mean relative error

—0.754

o{ L@ o o

0 10 20 30 40 50 0 10 20 30 40 50
% sampled % sampled

The black dot is the mean relative error over the N = 5 hot spots, % >N ‘Z’”(;f” ,and
the lines represent the range of the error.




Estimated density of resistant infections (5% sampled) ¢ .. 1py g

Truth (u(s,t)) E(U(s.t)lv)
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Comparison with Generalised Additive Model (GAM) SwissTPH g,

yi ~ Bernoulli(p;)
api) = XB+n+ns.

- All the covariates are included in the vector x; (age and disease
prevalence).

- The effect of time 7, and space ns are modelling using reduced dimension
thin plate regression splines.

- The spatial and temporal effects are modelled individually, and do not
depend on covariates.

- To check for collinearity between covariates and spatial and temporal
effects, we also consider
yi ~ Bernoulli(p;)
alp) = xp.



Comparison with Generalised Additive Model (GAM) SwissTPH g,

Generalised additive model coefficients

a(pi) | x z w

50% xB+m+ns | -129 663 154
X8 88 633 647

25% xfB+m+ns | 131 414 156
X3 88 -643 657

5% XB+m+ns | 132 486 156
X8 88 626 641

2% XB+m+n | -130 513 598
X8 86 798 -784

- x: sampling probability
-z neighbouring transmission (diffusion)

- w: local transmission (growth)



Comparison with Generalised Additive Model (GAM) Swiss TPH g

Generalised additive model coefficients

9(pi) | X z w

Xif3 -8.8 -633 647

X3 -8.8 -643 657

Xi8 -8.8 -626 641

-13.0 513 598
-86 798 -78.4

2% XiB+n+ns
X3

- x: sampling probability
-z neighbouring transmission (diffusion)

- w: local transmission (growth)



Comparison with Generalised Additive Model (GAM) SwissTPH §

Out-of-sample model prediction validation for t = [1,15] and out-of-sample forecast
validation for t = [16,20] using binomial deviance (SMALLER IS BETTER).

1% sampled 5% sampled
GAM - 81 GAM 648
GAM(ST) A 40 GAM(ST) A 201
MST 4 218 135 MST A 1126 649
predi'ction fore'cast predi'ction fore|cast
25% sampled 50% sampled
GAM A 3551 GAM 4 8628
GAM(ST) A 1603 GAM(ST)A 2186
MST 4 6073 3308 MST A 12092 6702

prediction  forecast prediction  forecast



CONCLUSIONS




Proof of concept Swiss TPH g

- The mechanistic spatio-temporal model is more accurate than GAM for

prediction.

- GAM encounters difficulty with collinearity when accounting for spatial

and temporal autocorrelation.

- The mechanistic spatio-temporal model can identify which resistance hot

spots are of most concern, even when only sampling 5% of the region.
- Versatile to different scales - from global, national, to district.

- The location of resistance hot spots can be set as unknown variables

instead.

- Depending on the data, can use y; ~ Poisson(};), not Bernoulli.
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